X class maths lesson content in SAPTAGIRI CHANNEL on 17.10.2020 by Satish sir
Search This Blog
Wednesday, September 16, 2020
Wednesday, August 26, 2020
మరో గణిత మేధావి ఇండియా నుంచి
ప్రపంచంలోనే ఫాస్టెస్ట్ హ్యూమన్ కాలిక్యులేటర్ గా... హైదరాబాద్ యువకుడు నీలకంఠ భానుప్రకాష్
ప్రపంచంలోనే ఫాస్టెస్ట్ హ్యూమన్ కాలిక్యులేటర్ గా... హైదరాబాద్ యువకుడు నీలకంఠ భానుప్రకాష్....
హైదరాబాద్ కు చెందిన నీలకంఠ భాను ప్రకాష్ అరుదైన గుర్తింపును సాధించారు . ఢిల్లీ యూనివర్సిటీ విద్యార్ధి అయిన ఆయన భారత దేశానికి ఘనమైన కీర్తిని తెచ్చి పెట్టారు . మైండ్ స్పోర్ట్స్ ఒలింపియాడ్ (ఎంఎస్ఓ) లో జరిగిన మెంటల్ కాలిక్యులేషన్ వరల్డ్ ఛాంపియన్షిప్లో భారత్ తరఫున తొలి స్వర్ణం సాధించిన హైదరాబాద్కు చెందిన 21 ఏళ్ల నీలకంఠ భాను ప్రకాష్ 'వరల్డ్స్ ఫాస్టెస్ట్ హ్యూమన్ కాలిక్యులేటర్' టైటిల్ గెలుచుకున్నాడు.
ప్రపంచంలోనే అత్యంత వేగవంతమైన మానవ కాలిక్యులేటర్ గా 4 ప్రపంచ రికార్డులు
ఆగస్టు 15 న స్వాతంత్ర్య దినోత్సవం సందర్భంగా లండన్లో మెంటల్ కాలిక్యులేషన్ వరల్డ్ ఛాంపియన్షిప్ జరిగింది.
నీలకంఠ భాను ప్రకాష్ టైటిల్ గెలవడం ఇదే మొదటిసారి కాదు. గతంలోనూ ఆయన అరుదైన అనేక రికార్డులను దక్కించుకున్నారు . ఢిల్లీ విశ్వవిద్యాలయానికి చెందిన సెయింట్ స్టీఫెన్ కాలేజీలో మ్యాథమెటిక్స్ ఆనర్స్ విద్యార్థి అయిన నీలకంఠ, ప్రపంచంలోనే అత్యంత వేగంగా మానవ కాలిక్యులేటర్గా 4 ప్రపంచ రికార్డులు దక్కించుకున్నారు . 50 లిమ్కా రికార్డులు ఆయన దక్కించుకున్నారంటే అతిశయోక్తి కాదు .
మెంటల్ కాలిక్యులేషన్ వరల్డ్ ఛాంపియన్షిప్ లో స్వర్ణ పతకం
మెంటల్ కాలిక్యులేషన్ వరల్డ్ ఛాంపియన్షిప్ లో గెలవటంపై ఆయన సంతోషం వ్యక్తం చేశారు . తాను ప్రపంచంలోనే అత్యంత వేగవంతమైన మానవ కాలిక్యులేటర్గా 4 ప్రపంచ రికార్డులు మరియు 50 లిమ్కా రికార్డులను దక్కించుకున్నానని ఆయన చెప్పుకొచ్చారు . నా మెదడు కాలిక్యులేటర్ వేగం కంటే వేగంగా లెక్కిస్తుందని ఎంత పెద్ద లెక్క అయినా చిటికెలో చెప్తానని ఆయన అన్నారు. స్కాట్ ఫ్లాన్స్ బర్గ్ మరియు శకుంతల దేవి వంటి హ్యూమన్ కంప్యూటర్స్ గా గుర్తింపు ఉన్న మాథ్స్ మ్యాస్ట్రోలు గతంలో ఇలా రికార్డులను బద్దలు కొట్టారు . ఇప్పుడు వారి సరసన నీలకంఠ చేరారు.
13 దేశాలతో పోటీలో ప్రధమ స్థానం
ఎంఎస్ఓలో భారత్కు బంగారు పతకం సాధించిన నీలకంఠ దేశ కీర్తిని ఇనుమడింపజేశారు . ఆయన అభిప్రాయం ప్రకారం భౌతిక క్రీడల రంగంలో జరిగే ఇతర ఒలింపిక్ ఈవెంట్లకు మెంటల్ కాలిక్యులేషన్ వరల్డ్ ఛాంపియన్షిప్ సమానం అని పేర్కొన్నారు. ఈ సంవత్సరం 30 మంది మాథ్స్ మ్యాస్ట్రో లతో ఈ ఈవెంట్ జరిగింది. మానసిక నైపుణ్యం మరియు మైండ్ స్పోర్ట్స్ ఆటల కోసం అత్యంత ప్రతిష్టాత్మకమైన అంతర్జాతీయ పోటీలలో ఇది ఒకటి, యుకె, జర్మనీ, యుఎఇ, ఫ్రాన్స్ గ్రీస్ మరియు లెబనాన్లతో సహా 13 దేశాల నుండి 57 సంవత్సరాల వయస్సు ఉన్నవారు వరకు పాల్గొన్నారు .
కాలిక్యులేటర్ కంటే వేగంగా లెక్కలు .. హైదరాబాదీ అపూర్వ ప్రతిభ
ఈ పోటీలో 65 పాయింట్లతో అగ్రస్థానంలో నీలకంఠ , రెండవ స్థానంలో లెబనీస్ పోటీదారు, మూడో స్థానంలో యుఏఈ పోటీదారు ఉన్నారు. న్యాయమూర్తులు అతని వేగంతో ఆశ్చర్యపోయారు . అతను చెప్పే లెక్కల కచ్చితత్వాన్ని నిర్ధారించటానికి వారు లెక్కలు చెయ్యటానికి సమయం పట్టింది. కానీ నీలకంఠ మాత్రం కచ్చితంగా కాలిక్యులేటర్ కంటే చాలా వేగంగా సమాధానాలు చెప్పేశారు . ఇప్పుడు భారతదేశాన్ని ప్రపంచ స్థాయి గణితంలో ముందు వరుసలో ఉంచడానికి నా వంతు కృషి చేస్తానని నీలకంఠ భాను ప్రకాష్ పేర్కొన్నారు. హైదరాబాద్ కు చెందిన నీలకంఠ అపూర్వ ప్రతిభకు హ్యాట్స్ ఆఫ్ చెప్తున్నారు .
Monday, August 17, 2020
|
Mathematics In India Past Present Future |
|
|
|
|
|
BY S.SATISH S.A(Maths),ZPHS NUNNA
మానవ జీవితంలో గణిత శాస్త్రానికి ప్రతేక స్ధానం ఉంది. మానవ జీవిత పరిణామ ప్రస్ధానంలో గణిత శాస్త్ర అనువర్తనాలతో ఎన్నో ముఖ్యమైన సంఘటనలు మానవ జీవనగతినే మార్చివేశాయి గణిత శాస్త్రం అభివృది భారతదేశ స్ధాయిలో గత, వర్తమాన కాలాలో ఎలాఉంది, భవిష్యతులో ఎలా ఉండబోతుందో ఒక సారి పరిశీలిద్దాం.
పూర్వకాలంలో గణిత శాస్త్రాNNIన్ని సహాయక అనువర్తిత అవసరాలకు వినియోగించేవారు. హారప్పా నాగరికత కాలంలో ప్రజా ఉపయోగ కరమైన కట్టడాలు, నిర్మాణ సమస్యలు పరిష్కరించడానికి వినియోగించేవారు. ఖగోళ శాస్త్రం, జ్యోతిష్య శాస్త్రం మరియు వేదకాలంలో హామగుండాల నిర్మాణంలో బౌధాయనుడు ఆయన శిష్యులు శుల్బ సూత్రాలను వినియోగించారు.
క్రీస్తు పూర్వం 5 లేదా 6 వ శతాబ్ధాల వరకు గణిత శాస్త్ర అధ్యయనం, జ్ఞాన సముపార్జనకు మరియు ఇతర విజ్ఞాన శాస్త్ర శాఖల అవసరాల కోసం జరిగేది.
వేదాలలో భాగంగా ‘4’ శుల్బ సుత్రాలు చాలా ప్రాముఖ్యత వహిస్తాయి. ఈ సూత్రాలు క్రీస్తుపుర్వం 800 నుంచి 200 సంవత్సరాలకు చెందినవి. ఈనాలుగు సూత్రాలను వాటి రచయితల పేర్లమీదుగా పిలుస్తారు. బౌధాయన, మానవ, ఆపస్ధంభ, కాత్యాయనుడు ఈ సూత్రాల రచయితలు . శుల్బ సుత్రాలు ప్రస్తుతం పైదాగరస్ పేరున ఉన్న సిద్దాంతాన్ని కలిగి ఉండడం ప్ర్రాచిన భారతీయులకు గణిత పరిజ్ఞానం ఎంత ఉందో తెలియజేస్తోంది. అకరణియ సంఖ్యల భావనని కూడా శుల్బ సుత్రాలు పరిచయం చేశాయి. ఆధునిక గణితంలోని శ్ర్రేణి విస్తరణకు కూడా ఈ శుల్బ సూత్రాలలో మార్గం చూపబడినది.
క్రీపూ 600 నుంచి 500 సంవత్సరాల మధ్య జైన పండితుల కృషితో ‘అనంతం’ అనే భావన గణితంలో అభివృద్ధీ చెందింది. సమితుల భావనలలో కార్డినల్ సంఖ్య అంటే సమితి లోని మూలకాల సంఖ్య పూర్వ కాలంలోనే భారతీయ గణితంలో అభివృద్ది చెందింది. ఇటివల 19 వ శతాబ్దంలో జార్జీ కాంటర్ కాలంలో మాత్రమే యూరోపియన్ గణితానికి కార్డినల్ సంఖ్యా భావన గురించి తెలిసింది. భారతీయ సంఖ్యా విధానం, స్ధానవిలువలు, ’శున్యం’ భావన భారతీయ గణితానికి ప్రపంచంలో ఆధిక్యం తెచ్చి పెట్టాయి అనడంలో అతిశ యోక్తి లేదు. క్రీప్రూ 300 సంవత్సరాల క్రితమే ఈనాడు ఉపయోగిస్తున్న సంఖ్యలను మనం బ్రహ్మి సంఖ్యలుగా చూడవచ్చు. బ్రహ్మి సంఖ్యలు, గుప్తుల కాలంలో క్రీపూ 400 సంవత్సరాల కాలంలో, తదనంతరం క్రీపూ 600 నుంచి 1000 సంవత్సరాల మధ్య దేవనాగరి సంఖ్యా విధానంగా మార్పు చెందింది. క్రీపూ 600 సంవత్సర కాలం నాటికీ భారత దేశంలో స్థాన విలువలు విధానం పూర్తిగా అభివృది చెంది వాడుకలోకి వచ్చింది. ‘పది గుర్తుల ద్వారా అంకెలను సూచించడం, వాటి వాస్తవ విలువలను, స్థాన విలువల విధానం, అంకెల స్థాన విలువలను తెలియచేసే విధానాన్ని మనకు అందించిన భారతదేశానికి సర్వదా రుణపడి ఉండాలని’ ప్రముఖ గణిత శాస్త్రవేత లాప్లాస్ చెప్పారు. ఈ విధానం ద్వారా గణన ప్రక్రియను సులభంగా వేగంగా నిర్వహించడం సాధ్యమవుతుంది. ఇంకా ఆసక్తి కరమైన విషయం ఏమిటంటే 17 వ శాతాబ్ధం వరకు యురప్ లో ‘0’ వాడకం లేదంటే చాలా ఆశ్చర్యంగా ఉంటుంది.
క్రీ .శ .500 నుంచి 1200 సంవత్సరాల మధ్య భారతదేశంలో సంప్రదాయక గణితం భాగా అభివృది చెందింది. ఈ కాలంలో గణితంలో చాలా ప్రముఖమైన పండితుల పేర్లు వినవచ్చేవి. వీరిలో మొదటి ఆర్యభట్ట, బ్రహ్మ గుప్త, మొదటి భాస్కర, మహావీర, రెండవ ఆర్యభట్ట, భాస్కరా చార్య, 2 వ భాస్కరుడు ప్రముఖమైన గణిత పండితులు.
ax + by =c అనే రేఖీయ సమీకరణం మూలాలు కనుగొనే పద్ధతిని ఆర్యభట్ట కనుగొన్నాడు. ఈ విధానానికి కట్టక లేదా పల్వరైజర్ పద్ధతి అని పేరు పెట్టాడు. అదే విధంగా కి 4 దశాంశ స్ధానాల వరకు విలువ కనుగొనడం, త్రికోణమితిలో సైన్ ప్రమేయానికి విలువలు కనుగొనడం వంటి చాలా ముఖ్యమైన ఆవిష్కరణలు చేసాడు.
ఇక ఆధునిక గణిత విషయానికి వస్తే సంఖ్యా శాస్త్రం - number theory లో అత్యంత ముఖ్యమైన ఆకర్షణియమైన పలితాలు రాబట్టిన రామానుజన్ పాత్ర చాలా ముఖ్యమైనది. ఈయన కృషితో ఆధునిక అంకగణిత సిద్ధాంతం(మాడ్యులర్ రూపం), బీజీయ రేఖా గణితం లో ప్రధాన స్ధానం సాధించింది. ప్రస్తుతం దైనందిన జీవితంలో గణితం చాలా ప్రముఖ పాత్ర వహిస్తోంది.
P.C మహలనోబిస్ భారత గణాంక పరిశోధనా కేంద్రం స్ధాపించి, ప్రపంచ ప్రఖ్యాతిగాంచిన జాతీయ నమునాసేకరణ విధానాన్నీ ప్రారంభిచాడు.
C. R. రావు ధియరీ ఆప్ ఎస్టిమేషన్ ద్వారా భారత గణిత ప్రజ్ఞను ప్రపంచానికి చాటి చెప్పాడు.
సంఖ్యా వాదంలో మరో ప్రపంచ ప్రఖ్యాతిగన్న శాస్త్రవేత, కప్రేకర్ 6174 కప్రేకర్ స్దిరాంకం ద్వారా ప్రసిద్ధి చెందాడు. హరీష్ చంద్ర ఇన్ఫినెట్ డైమైన్షనల్ గ్రూప్ రిప్రిసెంటేషన్ సిద్ధాంతం ద్వారా ఉన్నత స్ధాయి గణితంలో విస్తృత సేవలందించాడు.
శకుంతలా దేవి వంటి మహిళా గణిత మేధావులు దేశ కీర్తి ప్రతిష్టలను సమున్నత స్థానం లో నిలిపారు
విమానాశ్రయలు, కమ్యునికేషన్, వేర్ హౌస్ లలో సమస్యలు సాధించడానికి నూతన అల్గరిధమ్ ను రూపొందించి నరేంద్ర కమలాకర్ ప్రపంచ ప్రసిద్ది గాంచాడు.
భారతదేశంలో గణిత శాస్త్రం ప్రస్తుత పరిస్థితిని తెలుసుకోవాలంటే దేశంలోని విశ్వవిద్యాలయాల్లో విద్యార్ధులు ప్రస్తుతం ఎంచుకుంటున్న కోర్సులను పరిశీలిస్తే ఒక అవగాహనకు రాగలం. డిల్లి విశ్వవిద్యాలయం గణిత శాస్త్ర శాఖ ప్రధాన ఆచార్యులు B. K. దాస్ గారి అభిప్రాయం ప్రకారం ఆధునిక కాలంలో అభివృద్ది చెందుతున్న గణన, సాంకేతిక అంశాల వల్ల గణిత శాస్త్ర ప్రాధాన్యం తిరిగి పెరుగుతోందని తెలిపారు. గత కొద్ది సంవత్సరాలుగా గణిత శాస్త్రాన్ని ఎంచుకుంటున్న విద్యార్ధుల సంఖ్యా భాగా పెరుగుతోందని, వ్యాపార గణితం, భౌతిక శాస్త్ర గణితం, రేఖీయ కార్యక్రమ విధానం, గేమ్స్ థియరి వంటి గణిత శాఖలు భాగా ప్రాచుర్యం పొందుతున్నాయి అని చెప్పారు . కమలా నెహ్రు కాలేజిలోని గణిత శాస్త్ర అధ్యాపకులు రీటా మల్హోత్ర ప్రస్తుత యువత వృత్తి పర మైన కోర్సులు ఎంచుకుంటున్న తరుణంలో గణితంలో అపార ఉపాధి అవకాశాలున్న గేమ్స్ థియరి, mathematical finance వంటి రంగాల్లో ఎక్కువ అభివృ ద్ది జరుగుతుందని తెలిపారు.
ఇక భవిష్యతులో భారతదేశ గణిత శాస్త్ర భవిష్యత్తు గురించి వివరించాలన్నా ఆలోచించాలన్నా ప్రస్తుతం దేశంలోని విశ్వవిద్యాలయాల్లో జరుగుతున్న గణిత పరిశోధనాంశాలను పరిశీలించాలి. ప్రస్తుతం దేశంలోని విశ్వవిద్యాలయాల్లో మోడలింగ్ పార్టికల్ మూవ్ మెంట్, ఏనిమల్ నావిగేషన్, కంపారిషన్ ఆప్ న్యుమెరికల్ ఇంటిగ్రేటర్స్ పర్ సిమ్యులేటింగ్ ధి సోలార్ సిస్టమ్, మాధమెటికల్ పిజియోలజి ఇన్ జనరల్ ( సెల్యులార్ పిజియోలజీ, ఆర్గాన్ మోడల్స్ ) పార్స్షి యల్ డిపరెన్షియల్ ఈక్వేషన్స్, ధియరీ ఆప్ కంప్యుటేషన్స్ , నావెల్ అప్రోచ్ టు ధి న్యూమెరికల్ సోల్యుషన్ ఆప్ ఆర్డినరి డిపరెన్షియల్ ఈక్వేషన్స్ వంటి అంశలలో పరిశోధనలు సాగుతున్నాయి. ఈ అంశాలతో వైద్య, అంతరిక్ష, వ్యాపార, జీవ భౌతిక రంగాలలో అనుప్రయుక్తంగా గణిత శాస్త్ర అభివృద్ది జరగనుంది. భారత ప్రభుత్వం కూడా రామానుజన్ శత జయంతి సందర్భంగా ఈ సంవత్సరాన్ని గణిత శాస్త్ర సంవత్సరంగా ప్రకటించింది. గణిత శాస్త్ర అభివృద్ది కి విశేష కృషి చేస్తున్నందున గణిత శాస్త్ర రంగంలో భారత దేశం భవిష్యతులో పూర్వ వైభవాన్నీ, అగ్ర స్ధానాన్నీ అలంకరిస్తుందని ఆశిద్దాం