Search This Blog

Sunday, March 13, 2022

మార్చ్ 14 పై డే


 ☀ మార్చ్ 14 పై డే☀

..... ఈ వివరాలు...


పై యొక్కవిలువ 3.14159 ఈ విలువ ఆధారంగా గణిత శాస్త్రవేత్తలు, మేధావులు ప్రతీ సంవత్సరం 3 నెల 14 వ తేదిన "పై డే "గా జరుపుకుంటారు.


గణితంలో వాడే ఒక గుర్తు పేరు పై " π" .

π (పై) యొక్క విలువ 22/7


ఒక వృత్తం వ్యాసం 1 అయితే, దాని చుట్టుకొలత π అవుతుంది.


పై (Pi) లేదా π అనేది చాలా ముఖ్యమైన గణిత స్థిరాంకాలలోఒకటి. దీని విలువ సుమారుగా 3.14159.


యూక్లీడియన్ జియోమెట్రీలో ఒక వృత్తం యొక్క వైశాల్యం, మరియు అదే వృత్తం యొక్క అర్ధ వ్యాసం యొక్క వర్గంలనిష్పత్తిని "పై" అనే గుర్తుతో సూచిస్తారు. గణితం, సైన్సు, ఇంజినీరింగ్ వంటి అనేక శాస్త్రాలలో వాడే సమీకరణాలలో "π" గుర్తు తరచు వస్తూంటుంది.


"పై" అనేది ఒక కరణీయ సంఖ్య (irrational number) - అంటే రెండు పూర్ణ సంఖ్యల నిష్పత్తి లేదా 'భిన్నం' గా దానిని తెలుపలేము. తత్ఫలితంగా పై యొక్క దశాంక రూపం (decimal representation) ఎప్పటికీ ముగియదు లేదా పునరుక్తి కాదు. అంతే కాదు. అది ఒక transcendental number కూడాను. అంటే పూర్ణ సంఖ్యలతో పరిమితమైన algebraic operations ద్వారా (వర్గీకరణ, వర్గమానము, కూడిక, హెచ్చవేత వంటివి) 'పై' విలువను సాధించలేము. 


గణిత శాస్త్రం చరిత్రలో 'పై' విలువను మరింత నిర్దిష్టంగా కనుగోవడానికి ఎన్నో ప్రయత్నాలు జరిగాయి. ఈ సంఖ్య పట్ల, దాని భావాలు, రహస్యాల పట్ల సాంస్కృతికంగా కూడా చాలా fascination నెలకొంది.

'చుట్టుకొలత'ను ఆంగ్లంలో perimeter అంటారు. దీనికి గ్రీకు పదం "περίμετρος". ఆ పదంలోని మొదటి అక్షరమైన πను ఈ విలువకు సంకేతంగా గణిత శాస్త్రవేత్త విలియమ్ జోన్స్ బహుశా 1706లో మొదటిగా వాడి వుండవచ్చును. తరువాత కొంత కాలానికి లియొనార్డ్ ఆయిలర్ ద్వారా ఇది బహుళ ప్రచారంలోకి వచ్చింది. దీనిని కొన్ని సందర్భాలలో వృత్త స్థిరరాశి (circular constant) అనీ, ఆర్కిమెడీస్ స్థిరరాశి,

లుడోల్ఫ్ సంఖ్య అనీ కూడా ప్రస్తావిస్తారు.


యూక్లీడియన్ సమతల రేఖాగణితంలో, π నిర్వచనం - ఒక వృత్తం యొక్క చుట్టుకొలత మరియు వ్యాసముల నిష్పత్తి


 'పై' విలువను ఇలా చెప్పవచ్చును - ఒక వృత్తం యొక్క వైశాల్యానికి, ఆ వృత్తపు అర్ధవ్యాసం భుజంగా కలిగిన చతురస్రం వైశాల్యానికి ఉన్న నిష్పత్తి.


రేఖా గణితపు చాపం యొక్క పొడవు, వైశాల్యాలతో సంబంధం లేకుండా ఇతర విధాలుగా కూడా 'పై'ను నిర్వచింపవచ్చును. ఉదాహరణకు: త్రికోణమితి ఫంక్షన్ "కొసైన్" ద్వారా. కాస్ (x) = 0 అయ్యే అతి తక్కువ ధనసంఖ్య xకు రెట్టింపు విలువ.


π ఒక కరణీయ సంఖ్య - అంటే దానిని రెండు పూర్ణ సంఖ్యల నిష్పత్తిగా తెలుపడం సాధ్యం కాదు. ఈ విషయం 1761 లో జోహాన్ హెన్రిక్ లాంబర్ట్ ఋజువు చేశాడు.20వ శతాబ్దంలో integral calculus కంటే ఎక్కువ పరిజ్ఞానం లేకుండానే ఈ విషయాన్ని ఋజువు చేసే విధానం కనుగొనబడింది. 


వీటిలో ఇవాన్ నివెన్ కనుగొన్న విధానం ఎక్కువ మందికి తెలుసు.[ఇలాంటిదే కాని అంతకు ముందే ఒక ఋజువు మేరీ కార్ట్‌రైట్ద్వారా తెలుపబడింది.


అంతే కాకుండా π ఒక ట్రాన్సెండంటల్ సంఖ్య కూడాను. ఈ విషయం 1882లో ఫెర్డినాండ్ వాన్ లిండ్‌మన్ ఋజువు చేశాడు. దీని అర్ధం ఏమంటే - రేషనల్ (అకరణీయ) సంఖ్యలు coefficients గా కలిగిన ఏ పాలినామియల్‌కూ π అనేది ఒక మూలము‌గా ఉండడం జరుగదు.


 π యొక్క ఈ transcendence కారణంగా అది కన్‌స్ట్రక్టిబుల్ సంఖ్య కాదు. అంటే ఏమిటి? - రేఖా గణితంలో కంపాస్ మరియు లంబకోణం ల ద్వారా గోయడానికి సాధ్యమైన అన్ని బిందువులూ constructible numbers. ఒక వృత్తానికి వర్గం నిర్మించడం సాధ్యం కాదు. అనగా కేవలం compass మరియు straightedge లు మాత్రమే వినియోగిస్తూ ఒక వృత్తానికి సమానమైన వైశాల్యం కలిగిన చతురస్రాన్ని నిర్మించడం సాధ్యం కాదు.


π యొక్క ట్రంకేటెడ్ విలువ 50 దశాంశ స్థానాల వరకు ఇలా ఉంది.

3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510

"పై" విలువను 10 వేల కోట్ల (ట్రిలియన్ అనగా (1012)) స్థానాలవరకు గుణించారు.కాని సాధారణంగా వాడే లెక్కలకు (ఉదాహరణకు వృత్తం యొక్క వైశాల్యం కనుగోవడానికి) ఒక డజను కంటే మించిన స్థానాల విలువ అవుసరపడదు. ఉదాహరణకు మనము శోధించగలిగిన విశ్వం పరిమాణంలో పట్టే ఎంత పెద్ద వృత్తం చుట్టుకొలతనయినా గాని 39 స్థానాల 'పై' విలువతో గనుక లెక్కిస్తే వచ్చే ఫలితంలోని అంచనాల వ్యత్యాసం హైడ్రోజన్ పరమాణువు యొక్క సైజు కంటే మెరుగుగా ఉంటుంది. .


π ఒక కరణీయ సంఖ్య గనుక దాని దశాంశ సంఖ్యలు ఎంతకూ ముగియవు లేదా పునరావృతం కావు. ఈ గుణం వల్ల 'పై' అంటే గణిత శాస్త్రజ్ఞులకూ, సామాన్యులకూ చాలా ఉత్సుకత కలుగజేస్తుంది. 


గడచిన కొద్ది శతాబ్దాలలో పై విలువ కనుగోవడానికీ, దాని ఇతర లక్షణాలు కనుగోవడానికీ ఎన్నో ప్రయత్నాలు జరిగాయి.సూపర్ కంప్యూటర్‌ల ద్వారా ఎన్నో లెక్కలు వేయబడ్డాయి. ట్రిలియన్ స్థానాల వరకు పై విలువ కనుగొన్నారు. ఎంతో విశ్లేషణ జరిగింది. కాని 'పై' విలువలో వచ్చే అనంతమైన అంకెల విధానంలో ఎటువంటి (simple pattern in the digits) సరళమైన అమరిక కనుగొన బడలేదు. 


π విలువను empirical గా కొలిచే విధానం ఇది - ఒక పెద్ద వృత్తాన్ని గీచి, దాని వ్యాసాన్ని, చుట్టుకొలతను కొలవాలి. చుట్టుకొలత విలువను వ్యాసం విలువతో భాగించాలి. ఆ వచ్చే విలువే π అవుతుంది. ఎంత పెద్ద వృత్తం గీసినా, లేదా ఎంత చిన్న వృత్తం గీసినా ఈ విలువ మారకూడదు. మరొక్క రేఖా గణిత విధానాన్ని ఆర్కిమెడీస్ కనుక్కొన్నాడు. r అనే అర్ధ వ్యాసంతో ఒక వృత్తాన్ని గీయాలి. ఆ వృత్తం యొక్క వైశాల్యం కనుక్కోవాలి. ఇందుకు వృత్తం లోపల సమ బహుభుజి (Inscribed regular polygon) ని గీసి, ఆ సమభుజి వైశాల్యాన్ని కనుగొనాలి. సమభుజి యొక్క భుజాలు ఎన్ని ఎక్కువగా ఉంటే వృత్తం యొక్క వైశాల్యం అంత నిర్దిష్టంగా వస్తుందన్నమాట. ఈ వృత్తం వైశాల్యం A అనుకొందాము. అదే వృత్తం అర్ధ వ్యాసం యొక్క వర్గం (దాని పొడవుకు సమానమైన సమ చతురస్రం యొక్క వైశాల్యం) r2 = B అనుకోండి. ఈ A మరియు B ల యొక్క నిష్పత్తి విలువ π అవుతుంది.


రేఖా గణితంతో సంబంధం లేకుండా π విలువను కేవలం పూర్తి గణిత విధానాలలో కూడా గణించవచ్చును. కాని వీటిలో చాలా విధానాలు అర్ధం చేసుకోవడానికి త్రికోణమితి, కలన గణితంలలోగణనీయమైన పరిజ్ఞానం కావలసి వస్తుంది. కాని కొన్ని సరళమైన పద్ధతులు కూడా ఉన్నాయి. ఉదాహరణకు గ్రెగరీ-లీబ్నిజ్ సిరీస్ .

ఈ సిరీస్ వ్రాయడానికి, లెక్కపెట్టడానికి అంత కష్టం కాదు గాని దాని ద్వారా π విలువ ఎందుకు వస్తుందనేది అంత తేలికగా అర్ధమయ్యే విషయం కాదు. అంతే కాకుండా, ఈ సిరీస్ చాలా నిదానంగా converge అవుతుంది. 300 terms దాకా వెళితే కూడా π విలువ రెండు దశాంశ స్థానాల వరకు కచ్చితంగా రాదు. ఈ లీబ్నిజ్ సిరీస్ ని మొదటిగా 15వ శతాబ్దానికి చెందిన మాధవ సంఘమాగ్రమ కనుగొన్నారు. ఈయన ప్రసిద్ధ భారతదేశ ఖగోళ గణిత శాస్త్రవేత్త. వీరు లీబ్నిజ్ కంటే 300 సంవత్సరాలక్రితమే కనుగొన్నారు. కావున ఈ శ్రేణిని మాధవ - లీబ్నిజ్ సిరీస్ అనికూడా అంటారు.....

Monday, March 7, 2022

Women's day Greetings


 

Just for fun

 *🏵️గణిత పదనిసలు.🏵️*


⭕6 బయట 7 స్తూ కూర్చోకు!


⭕లెక్కలు అర్ధం కాకుంటే 7 పొస్తుంది.


⭕100న రావు ఎలా ఉన్నాడు??


⭕గురువులకు 100 నం చేద్దాం!


⭕1/2 టి కాయ బజ్జీలు బాగా రుచిగా ఉంటాయి.


⭕ఈ రోజు మా కూర 1/2 టి కాయ వేపుడు.


 ⭕కూరలో కారం తక్కువ 1000.


⭕10 కాలాల పాటు చల్లగా ఉండాలి.


⭕చెడువ్యసనాలతో ఆయువు 3 తుంది.


⭕పెళ్లికూతురు 100000 ణంగా ఉంది.


⭕పై 1/2 లో 1/4 రం ఉన్నది

Friday, March 4, 2022

 In mathematics, no number can be divided by all the numbers from 1 to 10,


But this one number is very strange, all the mathematicians in the world


Shocked.


This number was discovered by Indian mathematicians with their unwavering intelligence.


See this number 2520. 


It seems to be one of many numbers,


But in reality, it is not, it is a number that has surprised many mathematicians around the world.


This number can be divided by any number from 1 to 10.


Whether even or odd


This number can be divided by any number from 1 to 10. The rest is zero. 


It sounds like really amazing and impossible numbers. Now, look at the table.


2520 ÷ 1 = 2520


2520 ÷ 2 = 1260


2520 ÷ 3 = 840


2520 ÷ 4 = 630


2520 ÷ 5 = 504


2520 ÷ 6 = 420


2520 ÷ 7 = 360


2520 ÷ 8 = 315


2520 ÷ 9 = 280


2520 ÷ 10 = 252


The secret of the number 2520 is hidden in the multiplication of [7 × 30 × 12].


With regard to the Indian Hindu year, the riddle of this 2520 number is solved,


It is the coefficient of this number.


Days of the week (7),


Days of the month (30)


And months in a year (12)


[7 × 30 × 12 = 2520] This is the characteristic and dominance of time. 


The great sage who discovered it was Sri Srinivasa Ramanujam.🙏

రుద్రం లో గణితం

 రుద్ర నమక చమకములలో ప్రత్యేకించి చమకములోని పనసలను చదువుతూ ఉంటే సంఖ్యా పరమైన సూచకములు కనబడతాయి. ఈ 11 వ అనువాకం లో ఒక రహస్యం దాగి ఉంది ఇందులో వరుసగ సంస్కృతంలో అన్నీ బేసి సంఖ్యలే వస్తాయి ఈ అంకెలు ఒక క్రమ పద్ధతిలో వచ్చునవి కావు. ఇవి దేవ సంఖ్యలు. కాని వాటి ముందు ఉండు సంఖ్యతో కూడి వర్గ మూలములను అపాదించిన ఒక క్రమ పద్ధతిలో గల మనుష్య సంఖ్యలు( వరుసక్రమం లో వచ్చు సంఖ్యలు) కలుగుతాయి. ఉదాహరణ కు అందులో (ఏకాచమే అనగా 1, త్రిసస్చమే అనగా 3, పంచచమే = 5, సప్తచమే 7, నవచమే 9, ఏకాదశచమే 11 ఇలా 1,3,5,7,9,11....బేసి సంఖ్యలే వస్తాయి ). కాని వాటి ముందు ఉండు సంఖ్యతో కూడి వర్గ మూలము లను అపాదించినచో ఇలా వస్తాయి....ఏకాచమే అనగా ఒకటి =1, త్రిసస్చమే అనగా 3+1 = 4 కి వర్గమూలం =2, పంచచమే = 5+4=9 కి వర్గమూలం = 3, సప్తచమే = 7+9=16 కి వర్గమూలం = 4, నవచమే = 9+16=25 కి వర్గ మూలం = 5, ఏకాదశచమే = 11+25 =36 కి వర్గ మూలం = 6, త్రయోదశచమే = 13 + 36 = 49 కి వర్గ మూలం = 7, పంచ దశచమె = 15 + 49 = 64 కి వర్గ మూలం = 8, సప్త దశచమే = 17 + 64 = 81 కి వర్గ మూలం = 9, నవ దశచమే = 19 + 91 = 100 కి వర్గ మూలం = 10, ఏకవిగుం శతిస్చమే = 21 +100 = 121 కి వర్గ మూలం = 11, త్రయోవిగుం శతిస్చమే = 23 + 121 = 144 కి వర్గ మూలం = 12, పంచవిగుం శతిస్చమే = 25 + 144 = 169 కి వర్గ మూలం = 13, సప్తవిగుం శతిస్చమే = 27+ 169 = 196 కి వర్గ మూలం = 14, నవవిగుం సతిస్చమే = 29 + 196 = 225 కి వర్గ మూలం = 15, ఏకత్రిగుం శతిస్చమే = 31 + 225 = 256 కి వర్గ మూలం = 16, త్రయోవిగుం శతిస్చమే = 33 +256 = 289 కి వర్గ మూలం = 17, పంచ విగుం శతిస్చమే = 35 + 289 = 324 కి వర్గ మూలం = 18, శప్తవిగుం శతిస్చమే = 37 + 324 = 361 కి వర్గ మూలం = 19, నవవిగుం శతిస్చమే = 39 + 361 = 400 కి వర్గ మూలం = 20, రుద్ర చమకము లో ఈ 11 వ అనువాకము సృష్టి పరమాణు రహస్యము. కాణాద మహర్షి సిద్ధాంతము ఈ సమస్త సృష్టి అణు, పరమాణు సూక్ష్మ కణ స్వరూపమని వాటిలో గల సంఖ్యా భేదము అనుసరించి వివిధ ధాతువులు యేర్పడినవి అని. శివ తత్వము ఈ సృష్టి లోని, పరమాణు స్వరూపం ( ఎలక్ట్రాన్, ప్రోటాన్, న్యూట్రాన్ ) ల స్థితి కంటెను అతీతమగు స్థితి. శివోహం శివోహం శివోహం,... ఓం శ్రీ చంద్రమౌళీశ్వరాయ నమః.